A complete, telomere-to-telomere human genome sequence provides new possibilities for evolutionary genomics – Nature Methods

  • Nurk, S. et al. Science 37644–53 (2022).

    CAS
    PubMed
    Article

    Google Scholar

  • Lander, ES et al. Nature 409860–921 (2001).

    CAS
    PubMed
    Article

    Google Scholar

  • Venter, JC et al. Science 2911304–1351 (2001).

    CAS
    PubMed
    Article

    Google Scholar

  • Logsdon, GA, Vollger, MR & Eichler, EE Nat Rev. Genet. 21597–614 (2020).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Aganezov, S. et al. Science 376eabl3533 (2022).

    CAS
    PubMed
    Article

    Google Scholar

  • Altemose, N. et al. Science 376eabl4178 (2022).

    CAS
    PubMed
    Article

    Google Scholar

  • Gershman, A. et al. Science 376eabj5089 (2022).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Hoyt, SJ et al. Science 376eabk3112 (2022).

  • Vollger, MR et al. Science 376eabj6965 (2022).

  • Logsdon, GA et al. Nature 593101–107 (2021).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Mao, Y. et al. Nature 59477–81 (2021).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Li, H. Bioinformatics 302843–2851 (2014).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Qi, J., Chen, Y., Copenhagen, GP & Ma, H. Proc. Natl Acad. Sci. USA 11110007–10012 (2014).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Rhie, A. et al. Nature 592737–746 (2021).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Lawniczak, MK et al. Proc. Natl Acad. Sci. USA 119e2115639118 (2022).

    PubMed
    PubMed Central
    Article

    Google Scholar

  • Wolffe, AP & Matzke, MA Science 286481-486 (1999).

    CAS
    PubMed
    Article

    Google Scholar

  • O’Neill, RJ, Eldridge, MD & Metcalfe, CJ J. Hered. 95375–381 (2004).

    PubMed
    Article

    Google Scholar

  • Bodega, B. & Orlando, V. Curr. Opin. Cell Biol. 3167–73 (2014).

    CAS
    PubMed
    Article

    Google Scholar

  • Kidwell, MG & Lisch, DR Evolution 551–24 (2001).

    CAS
    PubMed
    Article

    Google Scholar

  • Kashi, Y. & King, DG Trends Genet. 22253–259 (2006).

    CAS
    PubMed
    Article

    Google Scholar

  • Soltis, PS, Marchant, DB, Van de Peer, Y. & Soltis, DE Curr. Opin. Genet. Dev. 35119–125 (2015).

    CAS
    PubMed
    Article

    Google Scholar

  • Xia, B. et al. Oppression at bioRxiv https://doi.org/10.1101/2021.09.14.460388 (2021).

  • Smith, GP Science 191528-535 (1976).

    CAS
    PubMed
    Article

    Google Scholar

  • Rieseberg, LH Trends Ecol. Evol. 16351-358 (2001).

    PubMed
    Article

    Google Scholar

  • Raskina, O., Barber, JC, Nevo, E. & Belyayev, A. The cytogen. Genome Res. 120351–357 (2008).

    CAS
    PubMed
    Article

    Google Scholar

  • Fuller, ZL, Koury, SA, Phadnis, N. & Schaeffer, SW Mole. Ecol. 281283–1301 (2019).

    PubMed
    Article

    Google Scholar

  • Ventura, M., Archidiacono, N. & Rocchi, M. Genome Res. 11595–599 (2001).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Carbone, L. et al. Nature 513195–201 (2014).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Vollger, MR et al. Nat. Methods 1688–94 (2019).

    CAS
    PubMed
    Article

    Google Scholar

  • Jarvis, ED et al. Oppression at bioRxiv https://doi.org/10.1101/2022.03.06.483034 (2022).

  • Yang, C. et al. Nature 594227–233 (2021).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Zhou, Y. et al. Nature 592756–762 (2021).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Chen, S. et al. Nat. Genet. 46253–260 (2014).

    CAS
    PubMed
    Article

    Google Scholar

  • Wang, Z. et al. J. Genet. Genomics 49109–119 (2022).

    PubMed
    Article

    Google Scholar

  • Armstrong, J. et al. Nature 587246–251 (2020).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Zhou, F. et al. Nat. Genet. 48740–746 (2016).

    CAS
    PubMed
    Article

    Google Scholar

  • Meyer, A. et al. Nature 590284–289 (2021).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Wang, K. et al. Cell 1841362–1376.e1318 (2021).

    CAS
    PubMed
    Article

    Google Scholar

  • Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, IJ Genes (Basel) 988 (2018).

    Article
    CAS

    Google Scholar

  • Navarro Gonzalez, J. et al. Nucleic Acids Res. 49(D1), D1046 – D1057 (2021).

    PubMed
    Article
    CAS

    Google Scholar

  • Miga, KH & Wang, T. Annu. Reef. Genomics Hum. Genet. 2281–102 (2021).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar

  • Li, H. Bioinformatics 343094–3100 (2018).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Ren, J. & Chaisson, MJP PLOS Comput. Biol. 17e1009078 (2021).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Feng, S. et al. Nature 587252–257 (2020).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Boomsma, JJ et al. Myrmecol. News 2561–66 (2017).

    Google Scholar

  • Lewin, HA et al. Proc. Natl Acad. Sci. USA 1154325–4333 (2018).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Jebb, D. et al. Nature 583578–584 (2020).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Wu, D.-D. et al. Zool. Res. 43147–149 (2022).

    PubMed
    PubMed Central
    Article

    Google Scholar

  • Stiller, J. & Zhang, G. Diversity (Basel) 11115 (2019).

    CAS
    Article

    Google Scholar

  • Formenti, G. et al. Trends Ecol. Evol. 37197 (2022).

    PubMed
    Article

    Google Scholar

  • #complete #telomeretotelomere #human #genome #sequence #possibilities #evolutionary #genomics #Nature #Methods

    Leave a Comment

    Your email address will not be published.